Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hum Evol ; 176: 103310, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36812777

RESUMO

The fossil record of North American Eocene mammals is best known from relatively low-elevation 'basin center' fossil localities in intermontane depositional basins of the Western Interior. This sampling bias, largely drawn from preservational bias, has limited our understanding of fauna from higher elevation Eocene fossil localities. Here we describe new specimens of crown primates and microsyopid plesiadapiforms from a middle Eocene (Bridgerian) locality ('Fantasia') from the western margin of the Bighorn Basin in Wyoming. Fantasia has been considered a 'basin-margin' site and geological evidence suggests that it was already at a high elevation relative to the basin center at the time of deposition. New specimens were described and identified using comparisons across museum collections and published faunal descriptions. Linear measurements were used to characterize the patterns of variation in dental size. Contrary to expectations derived from other Eocene basin-margin sites in the Rocky Mountains, Fantasia has low anaptomorphine omomyid diversity and lacks evidence for the co-occurrence of ancestor-descendant pairs. Fantasia also differs from other Bridgerian sites in having low abundance of Omomys and unusual body sizes of several euarchontan taxa. Some specimens of Anaptomorphus and cf. Omomys are larger than those found in coeval sites, while specimens of Notharctus and Microsyops are intermediate in size between middle and late Bridgerian samples of these genera from basin-center sites. These findings suggest that high elevation fossil localities like Fantasia may record atypical faunal samples that should be more thoroughly explored to understand faunal dynamics during the periods of significant regional uplift like that represented by the middle Eocene record of the Rocky Mountains. Furthermore, modern faunal data indicate that species body mass may be influenced by elevation, which may further complicate the use of body mass to determine species identity in the fossil record in the regions of high topographic relief.


Assuntos
Dente , Animais , Primatas , Fósseis , Wyoming , Mamíferos
2.
Proc Biol Sci ; 289(1981): 20220847, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35975434

RESUMO

Senses form the interface between animals and environments, and provide a window into the ecology of past and present species. However, research on sensory behaviours by wild frugivores is sparse. Here, we examine fruit assessment by three sympatric primates (Alouatta palliata, Ateles geoffroyi and Cebus imitator) to test the hypothesis that dietary and sensory specialization shape foraging behaviours. Ateles and Cebus groups are comprised of dichromats and trichromats, while all Alouatta are trichomats. We use anatomical proxies to examine smell, taste and manual touch, and opsin genotyping to assess colour vision. We find that the frugivorous spider monkeys (Ateles geoffroyi) sniff fruits most often, omnivorous capuchins (Cebus imitator), the species with the highest manual dexterity, use manual touch most often, and that main olfactory bulb volume is a better predictor of sniffing behaviour than nasal turbinate surface area. We also identify an interaction between colour vision phenotype and use of other senses. Controlling for species, dichromats sniff and bite fruits more often than trichromats, and trichromats use manual touch to evaluate cryptic fruits more often than dichromats. Our findings reveal new relationships among dietary specialization, anatomical variation and foraging behaviour, and promote understanding of sensory system evolution.


Assuntos
Percepção de Cores , Visão de Cores , Animais , Cebus , Dieta
3.
J Hum Evol ; 167: 103184, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35462071

RESUMO

The phyletic position of early Miocene platyrrhine Homunculus patagonicus is currently a matter of debate. Some regard it to be an early member of the Pitheciidae, represented today by the sakis, uakaris, and titi monkeys. Others view Homunculus as a stem platyrrhine, part of a group that diversified in Patagonia and converged in some respects on modern pitheciine dental and gnathic morphology and perhaps seed-eating specialization. New details of its internal nasal anatomy are pertinent to resolving this debate. In addition, they provide a new perspective on how modern platyrrhine olfactory sensitivity evolved. Here we reconstruct the internal nasal anatomy of Homunculus from high-resolution computed tomography scans. This species has three ethmoturbinals, the scrolls of bone in the nasal fossa that were covered in sensory epithelium in vivo. This condition stands in stark contrast to extant platyrrhines, and indeed to all other haplorhines, which have only two ethmoturbinals or, in the case of all pitheciid platyrrhines, only one ethmoturbinal. Quantitatively, however, Homunculus has an olfactory turbinal surface area that falls within the modern platyrrhine distribution, suggesting that while turbinal numbers differ, olfactory sensitivity in this taxon was likely comparable to that of modern platyrrhines. These new data from the fossil record provide further support for the hypothesis that Homunculus is a stem platyrrhine that functionally converged on modern platyrrhines rather than being an early representative of any extant clade.


Assuntos
Evolução Biológica , Pitheciidae , Animais , Fósseis , Cavidade Nasal , Filogenia , Pitheciidae/anatomia & histologia , Platirrinos/anatomia & histologia
4.
J Hum Evol ; 132: 137-173, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31203844

RESUMO

Primates have historically been viewed as having a diminished sense of smell compared to other mammals. In haplorhines, olfactory reduction has been inferred partly based on the complexity of the bony turbinals within the nasal cavity. Some turbinals are covered in olfactory epithelium, which contains olfactory receptor neurons that detect odorants. Accordingly, turbinal number and complexity has been used as a rough anatomical proxy for the relative importance of olfactory cues for an animal's behavioral ecology. Unfortunately, turbinals are delicate and rarely preserved in fossil specimens, limiting opportunities to make direct observations of the olfactory periphery in extinct primates. Here we describe the turbinal morphology of Rooneyia viejaensis, a late middle Eocene primate of uncertain phylogenetic affinities from the Tornillo Basin of West Texas. This species is currently the oldest fossil primate for which turbinals are preserved with minimal damage or distortion. Microcomputed tomography (µCT) reveals that Rooneyia possessed 1 nasoturbinal, 4 bullar ethmoturbinals, 1 frontoturbinal, 1 interturbinal, and an olfactory recess. This pattern is broadly similar to the condition seen in some extant strepsirrhine primates but differs substantially from the condition seen in extant haplorhines. Crown haplorhines possess only two ethmoturbinals and lack frontoturbinals, interturbinals, and an olfactory recess. Additionally, crown anthropoids have ethmoturbinals that are non-bullar. These observations reinforce the conclusion that Rooneyia is not a stem tarsiiform or stem anthropoid. However, estimated olfactory turbinal surface area in Rooneyia is greater than that of similar-sized haplorhines but smaller than that of similar-sized lemuriforms and lorisiforms. This finding suggests that although Rooneyia was broadly plesiomorphic in retaining a large complement of olfactory turbinals as in living strepsirrhines, Rooneyia may have evolved somewhat diminished olfactory abilities as in living haplorhines.


Assuntos
Fósseis/anatomia & histologia , Cavidade Nasal/anatomia & histologia , Tarsii/anatomia & histologia , Animais , Evolução Biológica , Texas , Microtomografia por Raio-X/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...